$$ \begin{aligned}3 \cdot \frac{c}{3c^2+7c}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3c}{3c^2+7c}\end{aligned} $$ | |
① | Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{c}{3c^2+7c} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{c}{3c^2+7c} \xlongequal{\text{Step 2}} \frac{ 3 \cdot c }{ 1 \cdot \left( 3c^2+7c \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3c }{ 3c^2+7c } \end{aligned} $$ |