Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{\frac{35}{16^2}}{21}}{4}x& \xlongequal{ }\frac{\frac{\frac{35}{256}}{21}}{4}x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{5}{768}}{4}x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5}{3072}x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{5x}{3072}\end{aligned} $$ | |
① | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Cancel down by $ \color{blue}{7} $ $$ \begin{aligned} \frac{ \frac{35}{256} }{21} & \xlongequal{\text{Step 1}} \frac{35}{256} \cdot \frac{\color{blue}{1}}{\color{blue}{21}} \xlongequal{\text{Step 2}} \frac{35 : \color{blue}{7}}{5376 : \color{blue}{7}} = \\[1ex] &= \frac{5}{768} \end{aligned} $$ |
② | To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. $$ \begin{aligned} \frac{ \frac{5}{768} }{4} & = \frac{5}{768} \cdot \frac{\color{blue}{1}}{\color{blue}{4}} = \frac{5}{3072} \end{aligned} $$ |
③ | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{5}{3072} \cdot x & \xlongequal{\text{Step 1}} \frac{5}{3072} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 5 \cdot x }{ 3072 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 5x }{ 3072 } \end{aligned} $$ |