Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{3}{10}u+8u+9& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(\frac{3}{10}+8)u+9 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{83}{10}u+9 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{83u}{10}+9 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{83u+90}{10}\end{aligned} $$ | |
① | Use the distributive property. |
② | Combine like terms |
③ | Step 1: Write $ u $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{83}{10} \cdot u & \xlongequal{\text{Step 1}} \frac{83}{10} \cdot \frac{u}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 83 \cdot u }{ 10 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 83u }{ 10 } \end{aligned} $$ |
④ | Step 1: Write $ 9 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |