Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{3}{3a-3}+3\frac{a}{6}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(\frac{1}{3a-3}+\frac{a}{6})\cdot3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3a^2-3a+6}{18a-18}\cdot3 \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{a^2-a+2}{6a-6}\cdot3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{3a^2-3a+6}{6a-6} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{a^2-a+2}{2a-2}\end{aligned} $$ | |
① | Use the distributive property. |
② | To add raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{a^2-a+2}{6a-6} \cdot 3 & \xlongequal{\text{Step 1}} \frac{a^2-a+2}{6a-6} \cdot \frac{3}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( a^2-a+2 \right) \cdot 3 }{ \left( 6a-6 \right) \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3a^2-3a+6 }{ 6a-6 } \end{aligned} $$ |