Tap the blue circles to see an explanation.
$$ \begin{aligned}2x+\frac{10}{2}x^2-50& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x + \frac{ 10 : \color{orangered}{ 2 } }{ 2 : \color{orangered}{ 2 }} \cdot x^2 - 50 \xlongequal{ } \\[1 em] & \xlongequal{ }2x+\frac{5}{1}x^2-50 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x+5x^2-50 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}5x^2+2x-50\end{aligned} $$ | |
① | Divide both the top and bottom numbers by $ \color{orangered}{ 2 } $. |
② | Remove 1 from denominator. |
③ | Combine like terms: $$ 5x^2+2x-50 = 5x^2+2x-50 $$ |