Tap the blue circles to see an explanation.
$$ \begin{aligned}2 \cdot \frac{x}{4}x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2x}{4}x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2x^2}{4}\end{aligned} $$ | |
① | Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2 \cdot \frac{x}{4} & \xlongequal{\text{Step 1}} \frac{2}{\color{red}{1}} \cdot \frac{x}{4} \xlongequal{\text{Step 2}} \frac{ 2 \cdot x }{ 1 \cdot 4 } \xlongequal{\text{Step 3}} \frac{ 2x }{ 4 } \end{aligned} $$ |
② | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2x}{4} \cdot x & \xlongequal{\text{Step 1}} \frac{2x}{4} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 2x \cdot x }{ 4 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x^2 }{ 4 } \end{aligned} $$ |