Tap the blue circles to see an explanation.
$$ \begin{aligned}2 \cdot \frac{x}{x^2+5x+6}-\frac{x-3}{x^2+2x+3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2x}{x^2+5x+6}-\frac{x-3}{x^2+2x+3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x^3+2x^2+15x+18}{x^4+7x^3+19x^2+27x+18}\end{aligned} $$ | |
① | Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2 \cdot \frac{x}{x^2+5x+6} & \xlongequal{\text{Step 1}} \frac{2}{\color{red}{1}} \cdot \frac{x}{x^2+5x+6} \xlongequal{\text{Step 2}} \frac{ 2 \cdot x }{ 1 \cdot \left( x^2+5x+6 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x }{ x^2+5x+6 } \end{aligned} $$ |
② | To subtract raitonal expressions, both fractions must have the same denominator. |