Tap the blue circles to see an explanation.
$$ \begin{aligned}2 \cdot \frac{x}{5x+4}+6\frac{x}{2x+3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2x}{5x+4}+\frac{6x}{2x+3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{34x^2+30x}{10x^2+23x+12}\end{aligned} $$ | |
① | Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2 \cdot \frac{x}{5x+4} & \xlongequal{\text{Step 1}} \frac{2}{\color{red}{1}} \cdot \frac{x}{5x+4} \xlongequal{\text{Step 2}} \frac{ 2 \cdot x }{ 1 \cdot \left( 5x+4 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x }{ 5x+4 } \end{aligned} $$ |
② | Step 1: Write $ 6 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 6 \cdot \frac{x}{2x+3} & \xlongequal{\text{Step 1}} \frac{6}{\color{red}{1}} \cdot \frac{x}{2x+3} \xlongequal{\text{Step 2}} \frac{ 6 \cdot x }{ 1 \cdot \left( 2x+3 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 6x }{ 2x+3 } \end{aligned} $$ |
③ | To add raitonal expressions, both fractions must have the same denominator. |