Tap the blue circles to see an explanation.
$$ \begin{aligned}2q+\frac{5}{2}q^2+5q& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2q+\frac{5q^2}{2}+5q \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5q^2+4q}{2}+5q \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{5q^2+14q}{2}\end{aligned} $$ | |
① | Step 1: Write $ q^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{5}{2} \cdot q^2 & \xlongequal{\text{Step 1}} \frac{5}{2} \cdot \frac{q^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 5 \cdot q^2 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 5q^2 }{ 2 } \end{aligned} $$ |
② | Step 1: Write $ 2q $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: Write $ 5q $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |