Tap the blue circles to see an explanation.
$$ \begin{aligned}24 \cdot \frac{x^2}{12}x^2-6x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{24x^2}{12}x^2-6x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{24x^4}{12}-6x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{24x^4-72x}{12}\end{aligned} $$ | |
① | Step 1: Write $ 24 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 24 \cdot \frac{x^2}{12} & \xlongequal{\text{Step 1}} \frac{24}{\color{red}{1}} \cdot \frac{x^2}{12} \xlongequal{\text{Step 2}} \frac{ 24 \cdot x^2 }{ 1 \cdot 12 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 24x^2 }{ 12 } \end{aligned} $$ |
② | Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{24x^2}{12} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{24x^2}{12} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 24x^2 \cdot x^2 }{ 12 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 24x^4 }{ 12 } \end{aligned} $$ |
③ | Step 1: Write $ 6x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |