Tap the blue circles to see an explanation.
$$ \begin{aligned}21 \cdot \frac{n^3}{27}n^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{21n^3}{27}n^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{21n^5}{27}\end{aligned} $$ | |
① | Step 1: Write $ 21 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 21 \cdot \frac{n^3}{27} & \xlongequal{\text{Step 1}} \frac{21}{\color{red}{1}} \cdot \frac{n^3}{27} \xlongequal{\text{Step 2}} \frac{ 21 \cdot n^3 }{ 1 \cdot 27 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 21n^3 }{ 27 } \end{aligned} $$ |
② | Step 1: Write $ n^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{21n^3}{27} \cdot n^2 & \xlongequal{\text{Step 1}} \frac{21n^3}{27} \cdot \frac{n^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 21n^3 \cdot n^2 }{ 27 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 21n^5 }{ 27 } \end{aligned} $$ |