Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{2}{x+2}+\frac{3}{(x+2)(x+2)}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2}{x+2}+\frac{3}{x^2+2x+2x+4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2}{x+2}+\frac{3}{x^2+4x+4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2x+7}{x^2+4x+4}\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x+2}\right) $ by each term in $ \left( x+2\right) $. $$ \left( \color{blue}{x+2}\right) \cdot \left( x+2\right) = x^2+2x+2x+4 $$ |
② | Combine like terms: $$ x^2+ \color{blue}{2x} + \color{blue}{2x} +4 = x^2+ \color{blue}{4x} +4 $$ |
③ | To add raitonal expressions, both fractions must have the same denominator. |