Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{\frac{2}{p-2}}{6}}{p+2}+\frac{8}{p^2-4}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{2}{6p-12}}{p+2}+\frac{8}{p^2-4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2}{6p^2-24}+\frac{8}{p^2-4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{50}{6p^2-24}\end{aligned} $$ | |
① | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{2}{p-2} }{6} & \xlongequal{\text{Step 1}} \frac{2}{p-2} \cdot \frac{\color{blue}{1}}{\color{blue}{6}} \xlongequal{\text{Step 2}} \frac{ 2 \cdot 1 }{ \left( p-2 \right) \cdot 6 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2 }{ 6p-12 } \end{aligned} $$ |
② | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{2}{6p-12} }{p+2} & \xlongequal{\text{Step 1}} \frac{2}{6p-12} \cdot \frac{\color{blue}{1}}{\color{blue}{p+2}} \xlongequal{\text{Step 2}} \frac{ 2 \cdot 1 }{ \left( 6p-12 \right) \cdot \left( p+2 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2 }{ 6p^2+ \cancel{12p} -\cancel{12p}-24 } = \frac{2}{6p^2-24} \end{aligned} $$ |
③ | To add raitonal expressions, both fractions must have the same denominator. |