Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{2}{p-2}}{\frac{6}{p+2}+\frac{8}{p^2-4}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{2}{p-2}}{\frac{6p-4}{p^2-4}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2p+4}{6p-4} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{p+2}{3p-2}\end{aligned} $$ | |
① | To add raitonal expressions, both fractions must have the same denominator. |
② | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Factor numerators and denominators. Step 3: Cancel common factors. Step 4: Multiply numerators and denominators. Step 5: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{2}{p-2} }{ \frac{\color{blue}{6p-4}}{\color{blue}{p^2-4}} } & \xlongequal{\text{Step 1}} \frac{2}{p-2} \cdot \frac{\color{blue}{p^2-4}}{\color{blue}{6p-4}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 2 }{ 1 \cdot \color{red}{ \left( p-2 \right) } } \cdot \frac{ \left( p+2 \right) \cdot \color{red}{ \left( p-2 \right) } }{ 6p-4 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2 }{ 1 } \cdot \frac{ p+2 }{ 6p-4 } \xlongequal{\text{Step 4}} \frac{ 2 \cdot \left( p+2 \right) }{ 1 \cdot \left( 6p-4 \right) } = \\[1ex] & \xlongequal{\text{Step 5}} \frac{ 2p+4 }{ 6p-4 } \end{aligned} $$ |