Tap the blue circles to see an explanation.
$$ \begin{aligned}18 \cdot \frac{x^6}{27}x^4& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{18x^6}{27}x^4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{18x^{10}}{27}\end{aligned} $$ | |
① | Step 1: Write $ 18 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 18 \cdot \frac{x^6}{27} & \xlongequal{\text{Step 1}} \frac{18}{\color{red}{1}} \cdot \frac{x^6}{27} \xlongequal{\text{Step 2}} \frac{ 18 \cdot x^6 }{ 1 \cdot 27 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 18x^6 }{ 27 } \end{aligned} $$ |
② | Step 1: Write $ x^4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{18x^6}{27} \cdot x^4 & \xlongequal{\text{Step 1}} \frac{18x^6}{27} \cdot \frac{x^4}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 18x^6 \cdot x^4 }{ 27 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 18x^{10} }{ 27 } \end{aligned} $$ |