Tap the blue circles to see an explanation.
$$ \begin{aligned}16(x-4)(x+4)+2(x+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(16x-64)(x+4)+2x+8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}16x^2+64x-64x-256+2x+8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}16x^2-256+2x+8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}16x^2+2x-248\end{aligned} $$ | |
① | Multiply $ \color{blue}{16} $ by $ \left( x-4\right) $ $$ \color{blue}{16} \cdot \left( x-4\right) = 16x-64 $$Multiply $ \color{blue}{2} $ by $ \left( x+4\right) $ $$ \color{blue}{2} \cdot \left( x+4\right) = 2x+8 $$ |
② | Multiply each term of $ \left( \color{blue}{16x-64}\right) $ by each term in $ \left( x+4\right) $. $$ \left( \color{blue}{16x-64}\right) \cdot \left( x+4\right) = 16x^2+ \cancel{64x} -\cancel{64x}-256 $$ |
③ | Combine like terms: $$ 16x^2+ \, \color{blue}{ \cancel{64x}} \, \, \color{blue}{ -\cancel{64x}} \,-256 = 16x^2-256 $$ |
④ | Combine like terms: $$ 16x^2 \color{blue}{-256} +2x+ \color{blue}{8} = 16x^2+2x \color{blue}{-248} $$ |