Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{15}{30}y^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{ 15 : \color{orangered}{ 15 } }{ 30 : \color{orangered}{ 15 }} \cdot y^3 \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{1}{2}y^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{y^3}{2}\end{aligned} $$ | |
① | Divide both the top and bottom numbers by $ \color{orangered}{ 15 } $. |
② | Step 1: Write $ y^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot y^3 & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{y^3}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot y^3 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ y^3 }{ 2 } \end{aligned} $$ |