Tap the blue circles to see an explanation.
$$ \begin{aligned}12x^4(x-3)\frac{x+5}{30(x+3)(x+5)}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(12x^5-36x^4)\frac{x+5}{30(x+3)(x+5)} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(12x^5-36x^4)\frac{x+5}{(30x+90)(x+5)} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(12x^5-36x^4)\frac{x+5}{30x^2+150x+90x+450} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(12x^5-36x^4)\frac{x+5}{30x^2+240x+450} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}(12x^5-36x^4)\cdot\frac{1}{30x+90} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{2x^5-6x^4}{5x+15}\end{aligned} $$ | |
① | Multiply $ \color{blue}{12x^4} $ by $ \left( x-3\right) $ $$ \color{blue}{12x^4} \cdot \left( x-3\right) = 12x^5-36x^4 $$ |
② | Multiply $ \color{blue}{30} $ by $ \left( x+3\right) $ $$ \color{blue}{30} \cdot \left( x+3\right) = 30x+90 $$ |
③ | Multiply each term of $ \left( \color{blue}{30x+90}\right) $ by each term in $ \left( x+5\right) $. $$ \left( \color{blue}{30x+90}\right) \cdot \left( x+5\right) = 30x^2+150x+90x+450 $$ |
④ | Combine like terms: $$ 30x^2+ \color{blue}{150x} + \color{blue}{90x} +450 = 30x^2+ \color{blue}{240x} +450 $$ |
⑤ | Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{x+5}$. $$ \begin{aligned} \frac{x+5}{30x^2+240x+450} & =\frac{ 1 \cdot \color{blue}{ \left( x+5 \right) }}{ \left( 30x+90 \right) \cdot \color{blue}{ \left( x+5 \right) }} = \\[1ex] &= \frac{1}{30x+90} \end{aligned} $$ |
⑥ | Step 1: Write $ 12x^5-36x^4 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Factor numerators and denominators. Step 3: Cancel common factors. Step 4: Multiply numerators and denominators. Step 5: Simplify numerator and denominator. $$ \begin{aligned} 12x^5-36x^4 \cdot \frac{1}{30x+90} & \xlongequal{\text{Step 1}} \frac{12x^5-36x^4}{\color{red}{1}} \cdot \frac{1}{30x+90} \xlongequal{\text{Step 2}} \frac{ \left( 2x^5-6x^4 \right) \cdot \color{blue}{6} }{ 1 } \cdot \frac{ 1 }{ \left( 5x+15 \right) \cdot \color{blue}{6} } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x^5-6x^4 }{ 1 } \cdot \frac{ 1 }{ 5x+15 } \xlongequal{\text{Step 4}} \frac{ \left( 2x^5-6x^4 \right) \cdot 1 }{ 1 \cdot \left( 5x+15 \right) } = \\[1ex] & \xlongequal{\text{Step 5}} \frac{ 2x^5-6x^4 }{ 5x+15 } \end{aligned} $$ |