Tap the blue circles to see an explanation.
$$ \begin{aligned}12x^2-12 \cdot \frac{x}{8}x^2+8x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(12-12 \cdot \frac{x}{8})x^2+8x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(1-\frac{x}{8})\cdot12x^2+8x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-x+8}{8}\cdot12x^2+8x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-12x+96}{8}x^2+8x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-12x^3+96x^2}{8}+8x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{-12x^3+96x^2+64x}{8}\end{aligned} $$ | |
① | Use the distributive property. |
② | Use the distributive property. |
③ | Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
④ | Step 1: Write $ 12 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{-x+8}{8} \cdot 12 & \xlongequal{\text{Step 1}} \frac{-x+8}{8} \cdot \frac{12}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( -x+8 \right) \cdot 12 }{ 8 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -12x+96 }{ 8 } \end{aligned} $$ |
⑤ | Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{-12x+96}{8} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{-12x+96}{8} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( -12x+96 \right) \cdot x^2 }{ 8 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -12x^3+96x^2 }{ 8 } \end{aligned} $$ |
⑥ | Step 1: Write $ 8x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |