Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1}{s}qrt\frac{x}{(sqrtx+1)^2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{q}{s}rt\frac{x}{q^2r^2s^2t^2x^2+2qrstx+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{qr}{s}t\frac{x}{q^2r^2s^2t^2x^2+2qrstx+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{qrt}{s}\frac{x}{q^2r^2s^2t^2x^2+2qrstx+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{qrtx}{q^2r^2s^3t^2x^2+2qrs^2tx+s}\end{aligned} $$ | |
① | Step 1: Write $ q $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{s} \cdot q & \xlongequal{\text{Step 1}} \frac{1}{s} \cdot \frac{q}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot q }{ s \cdot 1 } \xlongequal{\text{Step 3}} \frac{ q }{ s } \end{aligned} $$ |
② | Find $ \left(qrstx+1\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ qrstx } $ and $ B = \color{red}{ 1 }$. $$ \begin{aligned}\left(qrstx+1\right)^2 = \color{blue}{\left( qrstx \right)^2} +2 \cdot qrstx \cdot 1 + \color{red}{1^2} = q^2r^2s^2t^2x^2+2qrstx+1\end{aligned} $$ |
③ | Step 1: Write $ r $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{q}{s} \cdot r & \xlongequal{\text{Step 1}} \frac{q}{s} \cdot \frac{r}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ q \cdot r }{ s \cdot 1 } \xlongequal{\text{Step 3}} \frac{ qr }{ s } \end{aligned} $$ |
④ | Find $ \left(qrstx+1\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ qrstx } $ and $ B = \color{red}{ 1 }$. $$ \begin{aligned}\left(qrstx+1\right)^2 = \color{blue}{\left( qrstx \right)^2} +2 \cdot qrstx \cdot 1 + \color{red}{1^2} = q^2r^2s^2t^2x^2+2qrstx+1\end{aligned} $$ |
⑤ | Step 1: Write $ t $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{qr}{s} \cdot t & \xlongequal{\text{Step 1}} \frac{qr}{s} \cdot \frac{t}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ qr \cdot t }{ s \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ qrt }{ s } \end{aligned} $$ |
⑥ | Find $ \left(qrstx+1\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ qrstx } $ and $ B = \color{red}{ 1 }$. $$ \begin{aligned}\left(qrstx+1\right)^2 = \color{blue}{\left( qrstx \right)^2} +2 \cdot qrstx \cdot 1 + \color{red}{1^2} = q^2r^2s^2t^2x^2+2qrstx+1\end{aligned} $$ |
⑦ | Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{qrt}{s} \cdot \frac{x}{q^2r^2s^2t^2x^2+2qrstx+1} & \xlongequal{\text{Step 1}} \frac{ qrt \cdot x }{ s \cdot \left( q^2r^2s^2t^2x^2+2qrstx+1 \right) } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ qrtx }{ q^2r^2s^3t^2x^2+2qrs^2tx+s } \end{aligned} $$ |