Tap the blue circles to see an explanation.
$$ \begin{aligned}-8 \cdot \frac{n^4}{8}n^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}n^4n^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}n^7\end{aligned} $$ | |
① | Step 1: Write $ 8 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Cancel $ \color{blue}{ 8 } $ in first and second fraction. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} 8 \cdot \frac{n^4}{8} & \xlongequal{\text{Step 1}} \frac{8}{\color{red}{1}} \cdot \frac{n^4}{8} \xlongequal{\text{Step 2}} \frac{\color{blue}{1}}{1} \cdot \frac{n^4}{\color{blue}{1}} = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 1 \cdot n^4 }{ 1 \cdot 1 } \xlongequal{\text{Step 4}} \frac{ n^4 }{ 1 } =n^4 \end{aligned} $$ |
② | $$ 1 n^4 n^3 = n^{4 + 3} = n^7 $$ |