$$ \begin{aligned}-5 \cdot \frac{x}{x^2+4x}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-\frac{5x}{x^2+4x}\end{aligned} $$ | |
① | Step 1: Write $ 5 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 5 \cdot \frac{x}{x^2+4x} & \xlongequal{\text{Step 1}} \frac{5}{\color{red}{1}} \cdot \frac{x}{x^2+4x} \xlongequal{\text{Step 2}} \frac{ 5 \cdot x }{ 1 \cdot \left( x^2+4x \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 5x }{ x^2+4x } \end{aligned} $$ |