Tap the blue circles to see an explanation.
$$ \begin{aligned}-2 \cdot \frac{x}{x^2}+x-6& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-\frac{2x}{x^2}+x-6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x^3-2x}{x^2}-6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{x^3-6x^2-2x}{x^2}\end{aligned} $$ | |
① | Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2 \cdot \frac{x}{x^2} & \xlongequal{\text{Step 1}} \frac{2}{\color{red}{1}} \cdot \frac{x}{x^2} \xlongequal{\text{Step 2}} \frac{ 2 \cdot x }{ 1 \cdot x^2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x }{ x^2 } \end{aligned} $$ |
② | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: Write $ 6 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |