$$ \begin{aligned}\frac{x^2-3x-4}{x^2+6x+5}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{x-4}{x+5}\end{aligned} $$ | |
① | Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{x+1}$. $$ \begin{aligned} \frac{x^2-3x-4}{x^2+6x+5} & =\frac{ \left( x-4 \right) \cdot \color{blue}{ \left( x+1 \right) }}{ \left( x+5 \right) \cdot \color{blue}{ \left( x+1 \right) }} = \\[1ex] &= \frac{x-4}{x+5} \end{aligned} $$ |