Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{x-2}{(x+2)^2}\frac{x+2}{2x-4}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{x-2}{x^2+4x+4}\frac{x+2}{2x-4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{1}{2x+4}\end{aligned} $$ | |
① | Find $ \left(x+2\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 2 }$. $$ \begin{aligned}\left(x+2\right)^2 = \color{blue}{x^2} +2 \cdot x \cdot 2 + \color{red}{2^2} = x^2+4x+4\end{aligned} $$ |
② | Step 1: Factor numerators and denominators. Step 2: Cancel common factors. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{x-2}{x^2+4x+4} \cdot \frac{x+2}{2x-4} & \xlongequal{\text{Step 1}} \frac{ 1 \cdot \color{blue}{ \left( x-2 \right) } }{ \left( x+2 \right) \cdot \color{red}{ \left( x+2 \right) } } \cdot \frac{ 1 \cdot \color{red}{ \left( x+2 \right) } }{ 2 \cdot \color{blue}{ \left( x-2 \right) } } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 1 }{ x+2 } \cdot \frac{ 1 }{ 2 } \xlongequal{\text{Step 3}} \frac{ 1 \cdot 1 }{ \left( x+2 \right) \cdot 2 } \xlongequal{\text{Step 4}} \frac{ 1 }{ 2x+4 } \end{aligned} $$ |