Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{x^2}{x-4}+\frac{16}{4-x}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-x^2+16}{-x+4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x+4\end{aligned} $$ | |
① | To add raitonal expressions, both fractions must have the same denominator. |
② | Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{x-4}$. $$ \begin{aligned} \frac{-x^2+16}{-x+4} & =\frac{ \left( -x-4 \right) \cdot \color{blue}{ \left( x-4 \right) }}{ \left( -1 \right) \cdot \color{blue}{ \left( x-4 \right) }} = \\[1ex] &= \frac{x+4}{1} =x+4 \end{aligned} $$ |