Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{x}{4}-\frac{p}{8}}{p}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{-p+2x}{8}}{p} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-p+2x}{8p}\end{aligned} $$ | |
① | To subtract raitonal expressions, both fractions must have the same denominator. |
② | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{-p+2x}{8} }{p} & \xlongequal{\text{Step 1}} \frac{-p+2x}{8} \cdot \frac{\color{blue}{1}}{\color{blue}{p}} \xlongequal{\text{Step 2}} \frac{ \left( -p+2x \right) \cdot 1 }{ 8 \cdot p } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -p+2x }{ 8p } \end{aligned} $$ |