Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{w-4\frac{w}{w+7}}{\frac{4}{w+7}+\frac{4}{w-7}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{w-\frac{4w}{w+7}}{\frac{8w}{w^2-49}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{\frac{w^2+3w}{w+7}}{\frac{8w}{w^2-49}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{w^3-4w^2-21w}{8w}\end{aligned} $$ | |
① | Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 4 \cdot \frac{w}{w+7} & \xlongequal{\text{Step 1}} \frac{4}{\color{red}{1}} \cdot \frac{w}{w+7} \xlongequal{\text{Step 2}} \frac{ 4 \cdot w }{ 1 \cdot \left( w+7 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4w }{ w+7 } \end{aligned} $$ |
② | To add raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: Write $ w $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
④ | To add raitonal expressions, both fractions must have the same denominator. |
⑤ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Factor numerators and denominators. Step 3: Cancel common factors. Step 4: Multiply numerators and denominators. Step 5: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{w^2+3w}{w+7} }{ \frac{\color{blue}{8w}}{\color{blue}{w^2-49}} } & \xlongequal{\text{Step 1}} \frac{w^2+3w}{w+7} \cdot \frac{\color{blue}{w^2-49}}{\color{blue}{8w}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ w^2+3w }{ 1 \cdot \color{red}{ \left( w+7 \right) } } \cdot \frac{ \left( w-7 \right) \cdot \color{red}{ \left( w+7 \right) } }{ 8w } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ w^2+3w }{ 1 } \cdot \frac{ w-7 }{ 8w } \xlongequal{\text{Step 4}} \frac{ \left( w^2+3w \right) \cdot \left( w-7 \right) }{ 1 \cdot 8w } = \\[1ex] & \xlongequal{\text{Step 5}} \frac{ w^3-7w^2+3w^2-21w }{ 8w } = \frac{w^3-4w^2-21w}{8w} \end{aligned} $$ |