$$ \begin{aligned}\frac{sqrt\cdot6x^3}{sqrt\cdot3x}sqrt\cdot8x^2& \xlongequal{ }\frac{sqrt\cdot6x^3}{sqrt\cdot3x}8qrstx^2 \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{6qrstx^3}{3qrstx}8qrstx^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{48q^2r^2s^2t^2x^5}{3qrstx}\end{aligned} $$ | |
① | Step 1: Write $ 8qrstx^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{6qrstx^3}{3qrstx} \cdot 8qrstx^2 & \xlongequal{\text{Step 1}} \frac{6qrstx^3}{3qrstx} \cdot \frac{8qrstx^2}{\color{red}{1}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 6qrstx^3 \cdot 8qrstx^2 }{ 3qrstx \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 48q^2r^2s^2t^2x^5 }{ 3qrstx } \end{aligned} $$ |