$$ \begin{aligned}\frac{p-7}{p^2-7p}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{p}\end{aligned} $$ | |
① | Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{p-7}$. $$ \begin{aligned} \frac{p-7}{p^2-7p} & =\frac{ 1 \cdot \color{blue}{ \left( p-7 \right) }}{ p \cdot \color{blue}{ \left( p-7 \right) }} = \\[1ex] &= \frac{1}{p} \end{aligned} $$ |