Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{m-\frac{6}{n}}{(8mn-48)\frac{\frac{m}{n}}{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{mn-6}{n}}{(8mn-48)\frac{m}{5n}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{\frac{mn-6}{n}}{\frac{8m^2n-48m}{5n}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{5mn^2-30n}{8m^2n^2-48mn}\end{aligned} $$ | |
① | Step 1: Write $ m $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
② | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{m}{n} }{5} & \xlongequal{\text{Step 1}} \frac{m}{n} \cdot \frac{\color{blue}{1}}{\color{blue}{5}} \xlongequal{\text{Step 2}} \frac{ m \cdot 1 }{ n \cdot 5 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ m }{ 5n } \end{aligned} $$ |
③ | Step 1: Write $ m $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
④ | Step 1: Write $ 8mn-48 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 8mn-48 \cdot \frac{m}{5n} & \xlongequal{\text{Step 1}} \frac{8mn-48}{\color{red}{1}} \cdot \frac{m}{5n} \xlongequal{\text{Step 2}} \frac{ \left( 8mn-48 \right) \cdot m }{ 1 \cdot 5n } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 8m^2n-48m }{ 5n } \end{aligned} $$ |
⑤ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{mn-6}{n} }{ \frac{\color{blue}{8m^2n-48m}}{\color{blue}{5n}} } & \xlongequal{\text{Step 1}} \frac{mn-6}{n} \cdot \frac{\color{blue}{5n}}{\color{blue}{8m^2n-48m}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( mn-6 \right) \cdot 5n }{ n \cdot \left( 8m^2n-48m \right) } \xlongequal{\text{Step 3}} \frac{ 5mn^2-30n }{ 8m^2n^2-48mn } \end{aligned} $$ |