$$ \begin{aligned}\frac{m^2-8m+15}{m-3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}m-5\end{aligned} $$ | |
① | Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{m-3}$. $$ \begin{aligned} \frac{m^2-8m+15}{m-3} & =\frac{ \left( m-5 \right) \cdot \color{blue}{ \left( m-3 \right) }}{ 1 \cdot \color{blue}{ \left( m-3 \right) }} = \\[1ex] &= \frac{m-5}{1} =m-5 \end{aligned} $$ |