Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{d-3\frac{d}{d+8}}{\frac{3}{d+8}+\frac{3}{d-8}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{d-\frac{3d}{d+8}}{\frac{6d}{d^2-64}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{\frac{d^2+5d}{d+8}}{\frac{6d}{d^2-64}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{d^3-3d^2-40d}{6d}\end{aligned} $$ | |
① | Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{d}{d+8} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{d}{d+8} \xlongequal{\text{Step 2}} \frac{ 3 \cdot d }{ 1 \cdot \left( d+8 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3d }{ d+8 } \end{aligned} $$ |
② | To add raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: Write $ d $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
④ | To add raitonal expressions, both fractions must have the same denominator. |
⑤ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Factor numerators and denominators. Step 3: Cancel common factors. Step 4: Multiply numerators and denominators. Step 5: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{d^2+5d}{d+8} }{ \frac{\color{blue}{6d}}{\color{blue}{d^2-64}} } & \xlongequal{\text{Step 1}} \frac{d^2+5d}{d+8} \cdot \frac{\color{blue}{d^2-64}}{\color{blue}{6d}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ d^2+5d }{ 1 \cdot \color{red}{ \left( d+8 \right) } } \cdot \frac{ \left( d-8 \right) \cdot \color{red}{ \left( d+8 \right) } }{ 6d } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ d^2+5d }{ 1 } \cdot \frac{ d-8 }{ 6d } \xlongequal{\text{Step 4}} \frac{ \left( d^2+5d \right) \cdot \left( d-8 \right) }{ 1 \cdot 6d } = \\[1ex] & \xlongequal{\text{Step 5}} \frac{ d^3-8d^2+5d^2-40d }{ 6d } = \frac{d^3-3d^2-40d}{6d} \end{aligned} $$ |