Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{a^5}{10}x\cdot\frac{5}{a^3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{a^5x}{10}\cdot\frac{5}{a^3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5a^5x}{10a^3}\end{aligned} $$ | |
① | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{a^5}{10} \cdot x & \xlongequal{\text{Step 1}} \frac{a^5}{10} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ a^5 \cdot x }{ 10 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ a^5x }{ 10 } \end{aligned} $$ |
② | Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{a^5x}{10} \cdot \frac{5}{a^3} & \xlongequal{\text{Step 1}} \frac{ a^5x \cdot 5 }{ 10 \cdot a^3 } \xlongequal{\text{Step 2}} \frac{ 5a^5x }{ 10a^3 } \end{aligned} $$ |