Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{a}{a-8}}{12+\frac{1}{a-8}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{a}{a-8}}{\frac{12a-95}{a-8}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{a}{12a-95}\end{aligned} $$ | |
① | Step 1: Write $ 12 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
② | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Cancel $ \color{red}{ a-8 } $ in first and second fraction. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{a}{a-8} }{ \frac{\color{blue}{12a-95}}{\color{blue}{a-8}} } & \xlongequal{\text{Step 1}} \frac{a}{a-8} \cdot \frac{\color{blue}{a-8}}{\color{blue}{12a-95}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{a}{\color{red}{1}} \cdot \frac{\color{red}{1}}{12a-95} \xlongequal{\text{Step 3}} \frac{ a \cdot 1 }{ 1 \cdot \left( 12a-95 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ a }{ 12a-95 } \end{aligned} $$ |