Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{8x+6}{x^2-7x+6}x\frac{\frac{\frac{x^2-x-12}{4x^2+11x+6}}{2x+6}}{x^2-7x+6}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{8x^2+6x}{x^2-7x+6}\frac{\frac{x-4}{8x^2+22x+12}}{x^2-7x+6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{8x^2+6x}{x^2-7x+6}\frac{x-4}{8x^4-34x^3-94x^2+48x+72} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{x^2-4x}{x^5-12x^4+33x^3+38x^2-132x+72}\end{aligned} $$ | |
① | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{8x+6}{x^2-7x+6} \cdot x & \xlongequal{\text{Step 1}} \frac{8x+6}{x^2-7x+6} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( 8x+6 \right) \cdot x }{ \left( x^2-7x+6 \right) \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 8x^2+6x }{ x^2-7x+6 } \end{aligned} $$ |
② | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Factor numerators and denominators. Step 3: Cancel common factors. Step 4: Multiply numerators and denominators. Step 5: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{x^2-x-12}{4x^2+11x+6} }{2x+6} & \xlongequal{\text{Step 1}} \frac{x^2-x-12}{4x^2+11x+6} \cdot \frac{\color{blue}{1}}{\color{blue}{2x+6}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( x-4 \right) \cdot \color{blue}{ \left( x+3 \right) } }{ 4x^2+11x+6 } \cdot \frac{ 1 }{ 2 \cdot \color{blue}{ \left( x+3 \right) } } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x-4 }{ 4x^2+11x+6 } \cdot \frac{ 1 }{ 2 } \xlongequal{\text{Step 4}} \frac{ \left( x-4 \right) \cdot 1 }{ \left( 4x^2+11x+6 \right) \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 5}} \frac{ x-4 }{ 8x^2+22x+12 } \end{aligned} $$ |
③ | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{8x+6}{x^2-7x+6} \cdot x & \xlongequal{\text{Step 1}} \frac{8x+6}{x^2-7x+6} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( 8x+6 \right) \cdot x }{ \left( x^2-7x+6 \right) \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 8x^2+6x }{ x^2-7x+6 } \end{aligned} $$ |
④ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{x-4}{8x^2+22x+12} }{x^2-7x+6} & \xlongequal{\text{Step 1}} \frac{x-4}{8x^2+22x+12} \cdot \frac{\color{blue}{1}}{\color{blue}{x^2-7x+6}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( x-4 \right) \cdot 1 }{ \left( 8x^2+22x+12 \right) \cdot \left( x^2-7x+6 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x-4 }{ 8x^4-56x^3+48x^2+22x^3-154x^2+132x+12x^2-84x+72 } = \frac{x-4}{8x^4-34x^3-94x^2+48x+72} \end{aligned} $$ |
⑤ | Step 1: Factor numerators and denominators. Step 2: Cancel common factors. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{8x^2+6x}{x^2-7x+6} \cdot \frac{x-4}{8x^4-34x^3-94x^2+48x+72} & \xlongequal{\text{Step 1}} \frac{ x \cdot \color{blue}{ \left( 8x+6 \right) } }{ x^2-7x+6 } \cdot \frac{ x-4 }{ \left( x^3-5x^2-8x+12 \right) \cdot \color{blue}{ \left( 8x+6 \right) } } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ x }{ x^2-7x+6 } \cdot \frac{ x-4 }{ x^3-5x^2-8x+12 } \xlongequal{\text{Step 3}} \frac{ x \cdot \left( x-4 \right) }{ \left( x^2-7x+6 \right) \cdot \left( x^3-5x^2-8x+12 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ x^2-4x }{ x^5-5x^4-8x^3+12x^2-7x^4+35x^3+56x^2-84x+6x^3-30x^2-48x+72 } = \frac{x^2-4x}{x^5-12x^4+33x^3+38x^2-132x+72} \end{aligned} $$ |