$$ \begin{aligned}\frac{8x^2+8x}{x^2+8x+7}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{8x}{x+7}\end{aligned} $$ | |
① | Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{x+1}$. $$ \begin{aligned} \frac{8x^2+8x}{x^2+8x+7} & =\frac{ 8x \cdot \color{blue}{ \left( x+1 \right) }}{ \left( x+7 \right) \cdot \color{blue}{ \left( x+1 \right) }} = \\[1ex] &= \frac{8x}{x+7} \end{aligned} $$ |