Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{7+\frac{8}{x}}{49}}{x}-\frac{64}{x^3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{\frac{7x+8}{x}}{49}}{x}-\frac{64}{x^3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{7x+8}{49x}}{x}-\frac{64}{x^3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{7x+8}{49x^2}-\frac{64}{x^3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{7x^4+8x^3-3136x^2}{49x^5}\end{aligned} $$ | |
① | Step 1: Write $ 7 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
② | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{7x+8}{x} }{49} & \xlongequal{\text{Step 1}} \frac{7x+8}{x} \cdot \frac{\color{blue}{1}}{\color{blue}{49}} \xlongequal{\text{Step 2}} \frac{ \left( 7x+8 \right) \cdot 1 }{ x \cdot 49 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 7x+8 }{ 49x } \end{aligned} $$ |
③ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{7x+8}{49x} }{x} & \xlongequal{\text{Step 1}} \frac{7x+8}{49x} \cdot \frac{\color{blue}{1}}{\color{blue}{x}} \xlongequal{\text{Step 2}} \frac{ \left( 7x+8 \right) \cdot 1 }{ 49x \cdot x } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 7x+8 }{ 49x^2 } \end{aligned} $$ |
④ | To subtract raitonal expressions, both fractions must have the same denominator. |