$$ \begin{aligned}\frac{7}{3y^2+23y+14}\frac{y}{3y^2+26y+16}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{7y}{9y^4+147y^3+688y^2+732y+224}\end{aligned} $$ | |
① | Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{7}{3y^2+23y+14} \cdot \frac{y}{3y^2+26y+16} & \xlongequal{\text{Step 1}} \frac{ 7 \cdot y }{ \left( 3y^2+23y+14 \right) \cdot \left( 3y^2+26y+16 \right) } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 7y }{ 9y^4+78y^3+48y^2+69y^3+598y^2+368y+42y^2+364y+224 } = \frac{7y}{9y^4+147y^3+688y^2+732y+224} \end{aligned} $$ |