Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{5n+5}{5n^2+35n-40}+7\frac{n}{3n}& \xlongequal{ }\frac{n+1}{n^2+7n-8}+7\frac{n}{3n} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{n+1}{n^2+7n-8}+\frac{7n}{3n} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{7n^3+52n^2-53n}{3n^3+21n^2-24n} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{7n^2+52n-53}{3n^2+21n-24}\end{aligned} $$ | |
① | Step 1: Write $ 7 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 7 \cdot \frac{n}{3n} & \xlongequal{\text{Step 1}} \frac{7}{\color{red}{1}} \cdot \frac{n}{3n} \xlongequal{\text{Step 2}} \frac{ 7 \cdot n }{ 1 \cdot 3n } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 7n }{ 3n } \end{aligned} $$ |
② | To add raitonal expressions, both fractions must have the same denominator. |