Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{5}{p+7}+\frac{9}{p-7}}{\frac{1}{p^2-49}+\frac{7}{p+7}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{14p+28}{p^2-49}}{\frac{7p-48}{p^2-49}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{14p+28}{7p-48}\end{aligned} $$ | |
① | To add raitonal expressions, both fractions must have the same denominator. |
② | To add raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Cancel $ \color{red}{ p^2-49 } $ in first and second fraction. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{14p+28}{p^2-49} }{ \frac{\color{blue}{7p-48}}{\color{blue}{p^2-49}} } & \xlongequal{\text{Step 1}} \frac{14p+28}{p^2-49} \cdot \frac{\color{blue}{p^2-49}}{\color{blue}{7p-48}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{14p+28}{\color{red}{1}} \cdot \frac{\color{red}{1}}{7p-48} \xlongequal{\text{Step 3}} \frac{ \left( 14p+28 \right) \cdot 1 }{ 1 \cdot \left( 7p-48 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 14p+28 }{ 7p-48 } \end{aligned} $$ |