Tap the blue circles to see an explanation.
$$ \begin{aligned}5(p+3)\frac{p+1}{25^2-75x-100}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(5p+15)\frac{p+1}{25^2-75x-100} \xlongequal{ } \\[1 em] & \xlongequal{ }(5p+15)\frac{p+1}{625-75x-100} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(5p+15)\frac{p+1}{-75x+525} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{p^2+4p+3}{-15x+105}\end{aligned} $$ | |
① | Multiply $ \color{blue}{5} $ by $ \left( p+3\right) $ $$ \color{blue}{5} \cdot \left( p+3\right) = 5p+15 $$ |
② | Combine like terms: $$ \color{blue}{625} -75x \color{blue}{-100} = -75x+ \color{blue}{525} $$ |
③ | Step 1: Write $ 5p+15 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Factor numerators and denominators. Step 3: Cancel common factors. Step 4: Multiply numerators and denominators. Step 5: Simplify numerator and denominator. $$ \begin{aligned} 5p+15 \cdot \frac{p+1}{-75x+525} & \xlongequal{\text{Step 1}} \frac{5p+15}{\color{red}{1}} \cdot \frac{p+1}{-75x+525} \xlongequal{\text{Step 2}} \frac{ \left( p+3 \right) \cdot \color{blue}{5} }{ 1 } \cdot \frac{ p+1 }{ \left( -15x+105 \right) \cdot \color{blue}{5} } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ p+3 }{ 1 } \cdot \frac{ p+1 }{ -15x+105 } \xlongequal{\text{Step 4}} \frac{ \left( p+3 \right) \cdot \left( p+1 \right) }{ 1 \cdot \left( -15x+105 \right) } = \\[1ex] & \xlongequal{\text{Step 5}} \frac{ p^2+p+3p+3 }{ -15x+105 } = \frac{p^2+4p+3}{-15x+105} \end{aligned} $$ |