Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{4x+6}{4x^2-9}+\frac{4}{2x-3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2}{2x-3}+\frac{4}{2x-3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{6}{2x-3}\end{aligned} $$ | |
① | Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{2x+3}$. $$ \begin{aligned} \frac{4x+6}{4x^2-9} & =\frac{ 2 \cdot \color{blue}{ \left( 2x+3 \right) }}{ \left( 2x-3 \right) \cdot \color{blue}{ \left( 2x+3 \right) }} = \\[1ex] &= \frac{2}{2x-3} \end{aligned} $$ |
② | To add expressions with the same denominators, we add the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{2}{2x-3} + \frac{4}{2x-3} & = \frac{2}{\color{blue}{2x-3}} + \frac{4}{\color{blue}{2x-3}} =\frac{ 2 + 4 }{ \color{blue}{ 2x-3 }} = \\[1ex] &= \frac{6}{2x-3} \end{aligned} $$ |