Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{4}{x}-\frac{1}{2}}{x-8}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{-x+8}{2x}}{x-8} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-\frac{1}{2x}\end{aligned} $$ | |
① | To subtract raitonal expressions, both fractions must have the same denominator. |
② | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Factor numerators and denominators. Step 3: Cancel common factors. Step 4: Multiply numerators and denominators. Step 5: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{-x+8}{2x} }{x-8} & \xlongequal{\text{Step 1}} \frac{-x+8}{2x} \cdot \frac{\color{blue}{1}}{\color{blue}{x-8}} \xlongequal{\text{Step 2}} \frac{ \left( -1 \right) \cdot \color{blue}{ \left( x-8 \right) } }{ 2x } \cdot \frac{ 1 }{ 1 \cdot \color{blue}{ \left( x-8 \right) } } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -1 }{ 2x } \cdot \frac{ 1 }{ 1 } \xlongequal{\text{Step 4}} \frac{ \left( -1 \right) \cdot 1 }{ 2x \cdot 1 } \xlongequal{\text{Step 5}} \frac{ -1 }{ 2x } \end{aligned} $$ |