Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{4}{3(y-2)}\frac{2-y}{3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4}{3y-6}\frac{2-y}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-\frac{4}{9}\end{aligned} $$ | |
① | Multiply $ \color{blue}{3} $ by $ \left( y-2\right) $ $$ \color{blue}{3} \cdot \left( y-2\right) = 3y-6 $$ |
② | Step 1: Factor numerators and denominators. Step 2: Cancel common factors. Step 3: Multiply numerators and denominators. $$ \begin{aligned} \frac{4}{3y-6} \cdot \frac{2-y}{3} & \xlongequal{\text{Step 1}} \frac{ 4 }{ 3 \cdot \color{red}{ \left( y-2 \right) } } \cdot \frac{ \left( -1 \right) \cdot \color{red}{ \left( y-2 \right) } }{ 3 } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 4 }{ 3 } \cdot \frac{ -1 }{ 3 } \xlongequal{\text{Step 3}} \frac{ -4 }{ 9 } \end{aligned} $$ |