$$ \begin{aligned}\frac{3x+1}{x^2-1}\frac{x+1}{3x^2+x}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{x^2-x}\end{aligned} $$ | |
① | Step 1: Factor numerators and denominators. Step 2: Cancel common factors. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{3x+1}{x^2-1} \cdot \frac{x+1}{3x^2+x} & \xlongequal{\text{Step 1}} \frac{ 1 \cdot \color{blue}{ \left( 3x+1 \right) } }{ \left( x-1 \right) \cdot \color{red}{ \left( x+1 \right) } } \cdot \frac{ 1 \cdot \color{red}{ \left( x+1 \right) } }{ x \cdot \color{blue}{ \left( 3x+1 \right) } } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 1 }{ x-1 } \cdot \frac{ 1 }{ x } \xlongequal{\text{Step 3}} \frac{ 1 \cdot 1 }{ \left( x-1 \right) \cdot x } \xlongequal{\text{Step 4}} \frac{ 1 }{ x^2-x } \end{aligned} $$ |