$$ \begin{aligned}\frac{3x-x^2}{3x^3}\frac{x}{9-x^2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-\frac{x^2}{-3x^4-9x^3}\end{aligned} $$ | |
① | Step 1: Factor numerators and denominators. Step 2: Cancel common factors. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{3x-x^2}{3x^3} \cdot \frac{x}{9-x^2} & \xlongequal{\text{Step 1}} \frac{ \left( -x \right) \cdot \color{blue}{ \left( x-3 \right) } }{ 3x^3 } \cdot \frac{ x }{ \left( -x-3 \right) \cdot \color{blue}{ \left( x-3 \right) } } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ -x }{ 3x^3 } \cdot \frac{ x }{ -x-3 } \xlongequal{\text{Step 3}} \frac{ \left( -x \right) \cdot x }{ 3x^3 \cdot \left( -x-3 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ -x^2 }{ -3x^4-9x^3 } \end{aligned} $$ |