Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{3x-1}{x^2+3x+2}+\frac{4}{x+1}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{7x+7}{x^2+3x+2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{7}{x+2}\end{aligned} $$ | |
① | To add raitonal expressions, both fractions must have the same denominator. |
② | Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{x+1}$. $$ \begin{aligned} \frac{7x+7}{x^2+3x+2} & =\frac{ 7 \cdot \color{blue}{ \left( x+1 \right) }}{ \left( x+2 \right) \cdot \color{blue}{ \left( x+1 \right) }} = \\[1ex] &= \frac{7}{x+2} \end{aligned} $$ |