Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{3x^2}{x+5}+\frac{15x}{x+5}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3x^2+15x}{x+5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x\end{aligned} $$ | |
① | To add expressions with the same denominators, we add the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{3x^2}{x+5} + \frac{15x}{x+5} & = \frac{3x^2}{\color{blue}{x+5}} + \frac{15x}{\color{blue}{x+5}} =\frac{ 3x^2 + 15x }{ \color{blue}{ x+5 }} \end{aligned} $$ |
② | Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{x+5}$. $$ \begin{aligned} \frac{3x^2+15x}{x+5} & =\frac{ 3x \cdot \color{blue}{ \left( x+5 \right) }}{ 1 \cdot \color{blue}{ \left( x+5 \right) }} = \\[1ex] &= \frac{3x}{1} =3x \end{aligned} $$ |