Tap the blue circles to see an explanation.
$$ \begin{aligned}3 \cdot \frac{t}{2-x}+\frac{5}{x-2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3t}{-x+2}+\frac{5}{x-2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3t-5}{-x+2}\end{aligned} $$ | |
① | Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{t}{2-x} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{t}{2-x} \xlongequal{\text{Step 2}} \frac{ 3 \cdot t }{ 1 \cdot \left( 2-x \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3t }{ 2-x } = \frac{3t}{-x+2} \end{aligned} $$ |
② | To add raitonal expressions, both fractions must have the same denominator. |